Sorption purification of mine ralized groundwaters from uranium compounds by pillared clays

1Kovalchuk, IA
1Pylypenko, IV
2Kornilovych, BYu.
1Bashchak, OE
1Institute for Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv
2NTU of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
Dopov. Nac. akad. nauk Ukr. 2019, 10:82-88
https://doi.org/10.15407/dopovidi2019.10.082
Section: Chemistry
Language: Ukrainian
Abstract: 

The removal of uranium (VI) from mineralized groundwaters by the adsorption onto pillared-bentonites is investigated. Various complexes of U(VI) in mineralized waters are examined. It has been shown that, in mineralized groundwaters, anionic carbonate complexes of U(VI) are selectively removed by samples of pillaredbentonite. Adsorption isotherms are obtained at pH 7.2 and an uranium concentration of 10—100 mg/l. The order of extracting anionic forms of uranium by pillared-bentonites is Ti > Fe > Zr> Al indicating that the Ti-pillared-bentonite form is the most effective in the removal of U(VI) from mineralized groundwaters. The uranium sorption data are fitted by the Langmuir and Freundlich equilibrium models to obtain the characteristic parameters of each model. According to the evaluation using the Langmuir model, the maximum sorption capacity of uranium (VI) ions onto Ti-pillared-bentonite is 36.57 mg/g under the ratio of solid to liquid 500 in 1 h. The results suggest that pillared-bentonites are suitable materials for the preconcentration and solidification of uranium (VI) species from mineralized groundwaters.

Keywords: mineralized groundwater, pillar-clays, sorption, uranium
References: 

1. Kornilovych, B. Yu., Sorokin, O. G., Pavlenko, V. M. & Koshyk, Yu. I. (2011). Environmental protection technologies in uranium mining and processing industries. Kyiv: Norma (in Ukrainian).
2. Torrero, M. E., Casas, I., Pablo, J., Sandino, M. C. A. & Grambow, B. (1994). A comparison between unirradiated UO2(s) and schoepite solubilities in 1 M NaCl medium. Radiochim. Acta, 66/67, pp. 29-35. doi: https://doi.org/10.1524/ract.1994.6667.special-issue.29
3. Kramer-Schnabel, U., Bischoff, H., Xi, R. H. & Marx, G. (1992). Solubility products and complex formation equilibria in the systems uranyl hydroxide and uranyl carbonate at 25 °C and I = 0.1 M. Radiochim. Acta, 56, pp. 183-188. doi: https://doi.org/10.1524/ract.1992.56.4.183
4. Meinrath, G., Kato, Y., Kimura, T. & Yoshida, Z. (1996). Solid-aqueous phase equilibria of uranium (VI) under ambient conditions. Radiochim. Acta, 25, pp. 159-167. doi: https://doi.org/10.1524/ract.1996.75.3.159
5. Shi, Y., He, J., Yang, X., Zhou, W., Wang, J. & Li, X. (2019). Sorption of U(VI) onto natural soil and different mineral compositions: The batch method and spectroscopy analysis. J. Environ. Radioactivity, 203, pp. 163-171. doi: https://doi.org/10.1016/j.jenvrad.2019.03.011
6. Langmuir, D. (1997). Aqueous environmental geochemistry. Prentice Hall: Upper Saddle River.
7. Pylypenko, I. V., Kovalchuk, I. A. & Kornilovych, B. Yu. (2014). Sorption of uranium and chromium ions on Zr/Al-pillared montmorillonite. Dopov. Nac. akad. nauk Ukr., No. 9, pp. 97-102 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2014.09.097
8. Pylypenko, I. V., Kovalchuk, I. A. & Kornilovych, B. Yu. (2015). Synthesis and sorption properties of Ti- and Tі/Al-pillared montmorillonite. Khimia, fizyka ta tekhnologia poverkhni, 6, No. 3, pp. 336-342 (in Ukrainian). doi: https://doi.org/10.15407/hftp06.03.336
9. Mnasri-Ghnimi, S. & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay Sci., 179, pp. 1-17. doi: https://doi.org/10.1016/j.clay.2019.105151
10.Kornilovych, B., Wireman, M., Ubaldini, S., Guglietta, D., Koshik, Yu., Caruso, B. & Kovalchuk, I. (2018). Uranium removal from groundwater by permeable reactive barrier with zero-valent iron and organic carbon mixtures: laboratory and field studies. Metals, 8, Iss. 6, 408, 15 p. doi: https://doi.org/10.3390/met8060408
11. Fujiwara, K., Yamana, H., Fujii, T., Kawamoto, K., Sasaki, T. & Moriyama, H. (2005). Solubility product of hexavalent uranium hydrous oxide. J. Nucl. Sci. Technol., 42, No. 3, pp. 289-294. doi: https://doi.org/10.1080/18811248.2005.9726392
12.Altmaier, M., Yalçıntas, E., Gaona, X., Neck, V., Müller, R., Schlieker, M. & Fanghänel, T. (2017). Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J. Chem. Thermodyn., 114, pp. 2-13. doi: https://doi.org/10.1016/j.jct.2017.05.039
13.Puigdomènech, I., Colas, E., Glive, M., Campos, I. & Garcia, D. (2014). A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. MRS Online Proceedings Library Archive, 1665, pp. 111-116. doi: https://doi.org/10.1557/opl.2014.635
14. Tombacz, E. & Szekeres, M. (2006). Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl. Clay Sci., 34, pp. 105-124. doi: https://doi.org/10.1016/j.clay.2006.05.009
15. Pecini, E.M. & Avena, M.J. (2013). Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite. Langmuir, 2013, 29, pp. 14926-14934. doi: https://doi.org/10.1021/la403384g