Antiapoptotic effect of leu-enkephalin neuropeptide on donor blood leukocytes under cold stress

1Gulevsky, AK, Moiseyevа, NN, 1Gorina, OL
1Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine, Kharkiv
Dopov. Nac. akad. nauk Ukr. 2019, 4:94-100
https://doi.org/10.15407/dopovidi2019.04.094
Section: Biochemistry
Language: Ukrainian
Abstract: 

Using various modes of cold stress, the degree of apoptosis depending on the duration of cold exposure and the temperature is determined. The influence of leu-enkephalin regulatory neuropeptide on the development of leukocyte apoptosis of human donor blood after cold stress by morphological indices is studied. The fluorescence microscopy and Hoechst 33342 and PI dyes were used. It has been proved that the addition of the neuropeptide in a concentration of 10−9 Mol to leukocytes, which were subjected to cold stress, significantly reduces the number of apoptotic cells.

Keywords: apoptosis, cold stress, leu-enkephalin, leukocytes
References: 

1. Gulevsky, A. K., Akhatova, Yu. S. & Shchenyavsky, I. I. (2017). Features of apoptosis, induced by temperature reduction. Probl. Cryobiol. Cryomed., 27, No. 2, pp. 97-109 (in Russian). doi: https://doi.org/10.15407/cryo27.02.097
2. Likhvantsev, V. V., Grebenchikov, O. A., Shaposhnikov, A. A., Borisov, K. Yu., Cherpakov, R. A. & Shulgina, N. V. (2012). Pharmacological preconditioning: role of opioid peptides. Obshchaya Reanimatologiya, 8, No. 3, pp. 51-55 (in Russian). doi: https://doi.org/10.15360/1813-9779-2012-3-51
3. Maslov, L. N., Lishmanov, Yu. B., Barzakh, E. I., Maksimov, I. V., Vorozhtsova, I. N., Bukhovets, I. L., Minin, S. M., Orlova, E. B., Lavrov, A. G. & Ovchinnikov, M. V. (2008). Cardiovascular effects of D-Ala2, Leu5, Arg6-enkephalin (Dalargin) are mediated by peripheral μ-opioid receptor activation. Éksperimentalnaya i Klini cheskaya Farmakologiya, 71, No. 2, pp. 21-28 (in Russian).
4. Shenoy, S. S. & Lui, F. (2018). Biochemistry, Endogenous Opioids. StatPearls. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK532899/
5. Agranenko, V. A., Sukisyan, G. V., Vorobyeva, G. S., Abezgauz, N. N., Troshina, V. M., Kopyl, V. I., Shitikova, M. G., Martynova, V. A. & Ermakova, G. A. (1985). Methods for isolation of thrombo- and leucocyte concentrates from the thrombocytic layer of the blood preserved in plastic bags. Hematology and Transfusiology, 30, No. 11, pp. 54-59 (in Russian).
6. Neutelings, T., Lambert, C. A., Nusgens, B. V. & Colige, A.C. (2013). Effects of mild cold shock (25 °C) followed by warming up at 37 °C on the cellular stress response. Plos One, 8, е69687. doi: https://doi.org/10.1371/journal.pone.0069687
7. Fransen, J. H., Dieker, J. W., Hilbrands, L. B., Berden, J. H. & van der Vlag, J. (2011). Synchronized turbo apoptosis induced by cold-shock. Apoptosis, 16, pp. 86-93. doi: https://doi.org/10.1007/s10495-010-0546-0
8. Rauen, U., Polzar, B., Stephan, H., Mannherz, H. G. & de Groot, H. (1999). Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J., 13, No. 1, pp. 155-168. doi: https://doi.org/10.1096/fasebj.13.1.155
9. Rauen, U., Petrat, F., Li, T. & De Groot, H. (2000). Hypothermia injury/cold induced apoptosis – evidence of an increase in chelatable iron causing oxidative injury in spite of low O2-/H2O2 formation. FASEB J., 14, No. 13, pp. 1953-1964. doi: https://doi.org/10.1096/fj.00-0071com
10. Zhang, Y., Chen, X., Gueydan, C. & Han, J. (2018). Plasma membrane changes during programmed cell deaths. Cell Res., 28, pp. 9-21. doi: https://doi.org/10.1038/cr.2017.133
11. Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P. & Zorov, D. B. (2011). Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim. Biophys. Acta., 1812, Iss. 1, pp. 77-86. doi: https://doi.org/10.1016/j.bbadis.2010.09.008