Let F be a ground field. Following [1], we call an associative F-algebra A a locally matrix algebra, if, for each finite subset of A, there exists a subalgebra $B \subset A$ containing this subset such that B is isomorphic to some matrix algebra $M_n(F)$ for $n \geq 1$. We call a locally matrix algebra A unital, if it contains a unit 1.

Let N be the set of all positive integers, and let P be the set of all primes. An infinite formal product of the form $s = \prod_{p \in P} p^{r_p}$, where $r_p \in N \cup \{0, \infty\}$ for all $p \in P$, is called Steinitz number (see [2]).

J.G. Glimm [3] proved that every countable-dimensional unital locally matrix algebra is uniquely determined by its Steinitz number. In [4, 5], we showed that this is no longer true for unital locally matrix algebras of uncountable dimensions.

S.A. Ayupov and K.K. Kudaybergenov [6] constructed an outer derivation of the countable-dimensional unital locally matrix algebra of Steinitz number 2^ω and used it as an example of an outer derivation in a von Neumann regular simple algebra. In [7], H. Strade studied derivations of locally finite-dimensional locally simple Lie algebras over a field of characteristic 0.

Recall that a linear map $d : A \to A$ is called a derivation, if $d(xy) = d(x)y + x d(y)$ for arbitrary elements x, y from A.

ISSN 1025-6415. Допов. Нац. акад. наук України. 2020. № 9: 19—23
For an element \(a \in A \), the adjoint operator \(\text{ad}_A(a) : A \to A, x \to [a, x] \), is an inner derivation of the algebra \(A \).

Let \(\text{Der}(A) \) be the Lie algebra of all derivations of the algebra \(A \), and let \(\text{Inder}(A) \) be the ideal of all inner derivations. The factor algebra \(\text{Outer}(A) = \text{Der}(A) / \text{Inder}(A) \) is called the algebra of outer derivations of \(A \).

Let \(\text{Aut}(A) \) and \(\text{Inn}(A) \) be the group of automorphisms and the group of inner automorphisms of the algebra \(A \), respectively. The factor group \(\text{Out}(A) = \text{Aut}(A) / \text{Inn}(A) \) is called the group of outer automorphisms of \(A \).

Along with automorphisms of the algebra \(A \), we consider the semigroup \(P(A) \) of injective endomorphisms (embeddings) of \(A \), \(\text{Aut}(A) \subseteq P(A) \).

The set \(\text{Map}(A, A) \) of all mappings \(A \to A \) is equipped with the Tykhonoff topology (see [8]).

Theorem 1. Let \(A \) be a locally matrix algebra.

1) The ideal \(\text{Inder}(A) \) is dense in \(\text{Der}(A) \) in the Tykhonoff topology.

2) Let the algebra \(A \) contain 1. Then the completion of \(\text{Inn}(A) \) in \(\text{Map}(A, A) \) is dense in \(\text{Aut}(A) \).

G. Köthe [9] proved that every countable-dimensional unital locally matrix algebra is isomorphic to a tensor product of matrix algebras.

We describe derivations of infinite tensor products of matrix algebras.

Let \(I \) be an infinite set, and let \(P \) be a system of nonempty finite subsets of \(I \). We say that the system \(P \) is sparse, if:

1) for any \(S \in P \), all nonempty subsets of \(S \) also lie in \(P \),

2) an arbitrary element \(i \in I \) lies in no more than finitely many subsets from \(P \).

Let \(A = \bigotimes_{i \in I} A_i \) and let all algebras \(A_i \) be isomorphic to finite-dimensional matrix algebras over \(F \). For a subset \(S = \{i_1, \ldots, i_r\} \subset I \), the subalgebra \(A_S := A_{i_1} \otimes \cdots \otimes A_{i_r} \) is a tensor factor of the algebra \(A \).

Let \(P \) be a system of nonempty finite subsets of \(I \). Let \(f_S, S \in P \), be a system of linear operators \(A \to A \). The sum \(\sum_{S \in P} f_S \) converges in the Tykhonoff topology if for an arbitrary element \(a \in A \) the set \(\{S \in P \mid f_S(a) \neq 0\} \) is finite. In this case, the operator \(a \to \sum_{S \in P} f_S(a) \) is a linear operator. Moreover, if every summand \(f_S \) is a derivation of the algebra \(A \), then this sum is also a derivation of the algebra \(A \).

Let \(P \) be a sparse system. For each subset \(S \in P \), we choose an element \(a_S \in A_S \). The sum \(\sum_{S \in P} \text{ad}_A(a_S) \) converges in the Tykhonoff topology to a derivation of \(A \). Indeed, choose an arbitrary element \(a \in A \). Let \(a \in A_{i_1} \otimes \cdots \otimes A_{i_r} \). Because of the sparsity of the system \(P \), for all but finitely many subsets \(S \in P \), we have \(\{i_1, \ldots, i_r\} \cap S = \emptyset \), and therefore \(\text{ad}_A(a_S)(a) = 0 \). Let \(D_P \) be the vector space of all such sums, \(D_P \subseteq \text{Der}(A) \).

For each algebra \(A_i, i \in I \), choose a subspace \(A_i^0 \) such that \(A_i = F \cdot 1_A_i + A_i^0 \) is a direct sum and \(1_A_i \) is a unit element of \(A_i \). Let \(E_i \) be a basis of \(A_i^0 \). For a subset \(S = \{i_1, \ldots, i_r\} \) of the set \(I \) let \(E_S := E_{i_1} \otimes \cdots \otimes E_{i_r} = \{a_S \in A_S \mid a_{i_k} \in E_{i_k}, 1 \leq k \leq r\} \) and \(\text{ad}_A(E_S) := \{\text{ad}_A(e) \mid e \in E_S\} \).

A description of derivations of the algebra \(A \) is given by the following theorem.

Theorem 2. 1) Suppose that the set \(I \) is countable. Then \(\text{Der}(A) = \bigcup_{P} D_P \), where the union is taken over all sparse systems of subsets of \(I \).
2) Let I be an infinite (not necessarily countable) set. Let P be a sparse system of subsets of I. Then the union of finite sets of operators $\bigcup_{S \in P} \text{ad}_A(E_S)$ is a topological basis of D_P.

Using this description, we prove the analog of the result of H. Strade [7] for locally matrix algebras.

Theorem 3. Let A be a countable-dimensional locally matrix algebra. Then the Lie algebra $\text{Outder}(A)$ is not locally finite-dimensional.

We describe automorphisms and unital injective endomorphisms of a countable-dimensional unital locally matrix algebra A. We note that by the result of A.G. Kurosh ([1, Theorem 10]), the semigroup $P(A)$ of unital injective homomorphisms is strictly bigger than $\text{Aut}(A)$.

The starting point here is again Köthe’s theorem [9] stating that every countable-dimensional unital locally matrix algebra A is isomorphic to a countable tensor product of matrix algebras. Therefore $A \cong \bigotimes_{i=1}^{\infty} A_i$, $A_i \cong M_{n_i}(F)$, $n_i \geq 1$.

Let H_n, $n \geq 1$, be the subgroup of the group $\text{Inn}(A)$ generated by conjugations by invertible elements from $\bigotimes_{i \geq n} A_i$. Clearly, $H_n \cong \text{Inn}(\bigotimes_{i \geq n} A_i)$ and $\text{Inn}(A) = H_1 > H_2 > \ldots$. For each $n \geq 1$, choose a system of representatives of left cosets hH_{n+1}, $h \in H_n$, and denote it as X_n. We assume that each X_n contains the identical automorphism.

For an arbitrary sequence of automorphisms $\phi_n \in X_n$, $n \geq 1$, the infinite product $\phi = \phi_1 \phi_2 \ldots$ converges in the Tychonoff topology. Clearly, $\phi \in P(A)$.

Theorem 4. An arbitrary unital injective endomorphism $\phi \in P(A)$ can be uniquely represented as $\phi = \phi_1 \phi_2 \ldots$, where $\phi_n \in X_n$, for each $n \geq 1$.

We call a sequence of automorphisms $\phi_n \in H_n$, $n \geq 1$, integrable, if, for an arbitrary element $a \in A$, the subspace spanned by all elements $\phi_n \phi_{n-1} \cdots \phi_1(a)$, $n \geq 1$, is finite-dimensional.

Theorem 5. An injective endomorphism $\phi = \phi_1 \phi_2 \ldots$, where $\phi_n \in H_n$, $n \geq 1$, is an automorphism, if and only if the sequence $\{\phi_n^{-1}\}_{n \geq 1}$ is integrable.

Using Theorems 3, 4, we determine dimensions of Lie algebras $\text{Der}(A)$ and $\text{Outder}(A)$ and orders of groups $\text{Aut}(A)$ and $\text{Out}(A)$, where A is a countable-dimensional locally matrix algebra.

We denote the cardinality of a set X as $|X|$. For two sets X and Y, let $\text{Map}(Y, X)$ denote the set of all mappings from Y to X. Given two cardinals α, β and sets X, Y such that $|X| = \alpha$, $|Y| = \beta$ we define $\alpha^\beta = |\text{Map}(Y, X)|$. As always \aleph_0 stands for the countable cardinality.

Theorem 6. Let $A = \bigotimes_{i=1}^{\infty} A_i$, where I is an infinite set, and each algebra A_i is isomorphic to a matrix algebra over a field F of the dimension ≥ 1. Then $\dim_F \text{Der}(A) = \dim_F \text{Out}(A) = |F|^{|I|}$.

Theorem 7. Let A be a countable-dimensional locally matrix algebra over a field F. Then $\dim_F \text{Der}(A) = \dim_F \text{Out}(A) = |F|^{|\aleph_0|}$.

Theorem 8. Let A be a countable—dimensional locally matrix algebra over a field F. Then $|\text{Aut}(A)| = |\text{Out}(A)| = |F|^{|\aleph_0|}$.

Consider the algebra $M_N(F)$ of $N \times N$ matrices over the ground field F having finitely many nonzero elements in each column.

Following [10], we call an $N \times N$ matrix periodic (more precisely: n-periodic), if it is block-diagonal $\text{diag}(a, a, \ldots)$, where a is an $n \times n$ matrix.

Let $M^p_n(F)$ be the subalgebra of $M_N(F)$ that consists of all n-periodic matrices. Clearly, $M^p_n(F) \equiv M_n(F)$.
Let s be a Steinitz number. Then $M_s^p(F) = \bigcup_{n \in N, n \mid s} M_n^p(F)$ is a subalgebra of $M_s(F)$ (see [10]). By the Theorem of J. Glimm [3], $M_s^p(F)$ is the only (up to isomorphism) unital locally matrix algebra of Steinitz number s.

Let $GL_n^p(F)$ be the group of invertible elements of $M_n^p(F)$, $SL_n^p(F) = [GL_n^p(F), GL_n^p(F)]$. Clearly, $GL_n^p(F) \equiv GL_n(F)$, $SL_n^p(F) \equiv SL_n(F)$.

Let n_1, n_2, \ldots be a sequence of positive integers such that $n_i \mid n_{i+1}$, $i \geq 1$, and let s be the least common multiple of the numbers $(n_i, i \geq 1)$. Then

\[GL_{n_1}^p(F) \subset GL_{n_2}^p(F) \subset \cdots, \bigcup_{i \geq 1} GL_{n_i}^p(F) = GL_s^p(F), \]

\[SL_{n_1}^p(F) \subset SL_{n_2}^p(F) \subset \cdots, \bigcup_{i \geq 1} SL_{n_i}^p(F) = SL_s^p(F). \]

Our aim is to describe isomorphisms between groups $SL_s^p(F)$. We will do it in a more general context of unital locally matrix algebras.

Recall that, for an arbitrary associative unital F-algebra R and an arbitrary positive integer $n \geq 2$, the elementary linear group $E_n(R)$ is the group generated by all transvections $t_{ij}(a) = I_n + e_{ij}(a)$, $1 \leq i \neq j \leq n$, where I_n is the identity $n \times n$ matrix, $a \in R$, $e_{ij}(a)$ is the $n \times n$ matrix having the element a at the (ij)-position and zero elsewhere. Denote, by R^*, the group of invertible elements of algebra R.

Let A be an infinite-dimensional unital locally matrix algebra. Let a subalgebra $1 \in B \subseteq A$ be isomorphic to some matrix algebra $M_n(F)$ for $n \geq 4$ and let C be a centralizer of the subalgebra B in A. By the theorem of H.M. Wedderburn (see [11]), $A \equiv M_n(C)$. We show that, in this case, $[A^*, A^*] \equiv E_n(C)$. After that, it is sufficient to apply the description of isomorphisms of elementary linear groups over rings due to I.Z. Golubchik and A.V. Mikhalev [12, 13] and E.I. Zelmanov [14] in order to prove the following theorems.

Theorem 9. Let A, B be unital locally matrix algebras. If the groups $[A^*, A^*]$ and $[B^*, B^*]$ are isomorphic, then the rings A and B are isomorphic or anti-isomorphic. Moreover, for any isomorphism $\phi : [A^*, A^*] \to [B^*, B^*]$, either there exists a ring isomorphism $\theta_1 : A \to B$ such that ϕ is the restriction of θ_1 to $[A^*, A^*]$ or there exists a ring anti-isomorphism $\theta_2 : A \to B$ such that, for an arbitrary element $g \in [A^*, A^*]$, we have $\phi(g) = \theta_2(g^{-1})$.

If the algebras A, B are countable-dimensional, then Theorem 9 can be strengthened. In this case, without loss of generality, we assume that $A = M_s^p(F)$, where s is the Steinitz number of the algebra A. The algebra $M_s^p(F)$ is closed with respect to the transposition $t : M_s^p(F) \to M_s^p(F)$, $g \to g^t$, which is an anti-isomorphism.

Theorem 10. Let A, B be countable-dimensional unital locally matrix algebras. If the groups $[A^*, A^*]$ and $[B^*, B^*]$ are isomorphic, then the F-algebras A and B are isomorphic. Moreover, an arbitrary isomorphism $\phi : [A^*, A^*] \to [B^*, B^*]$ either extends to a ring isomorphism $\theta_1 : A \to B$ or there exists a ring isomorphism $\theta_2 : A \to B$ such that $\phi(g) = \theta_2((g^{-1})^t)$ for all elements $g \in [A^*, A^*]$.

Corollary. Let s_1, s_2 be Steinitz numbers. Then $SL_{s_1}^p(F) \equiv SL_{s_2}^p(F)$, if and only if $s_1 = s_2$.
REFERENCES

Received 11.08.2020

О.О. Безущак
Київський національний університет ім. Тараса Шевченка
E-mail: bezusch@univ.kiev.ua

ДИФЕРЕНЦІЮВАННЯ ТА АВТОМОРФІЗМИ
ЛОКАЛЬНО МАТРИЧНИХ АЛГЕБР І ГРУП
Описано диференціювання та автоморфізми нескінчених тензорних добутків матричних алгебр. З використанням цього опису показано, що для зліченновимірної локально матричної алгебри A над полем F розмірність алгебри L зовнішніх диференціювань A і порядок групи зовнішніх автоморфізмів A збігаються і дорівнюють $|F|_{\aleph_0}$, де $|F|$ означає потужність поля F.

Нехай A^* — група оборотних елементів унітальної локально матричної алгебри A. Описано ізоморфізми групи $[A^*, A^*]$. Зокрема, показано, що індуктивні границі груп $SL_n(F)$ визначаються їх числами Стейніца.

Ключові слова: локально матрична алгебра, диференціювання, автоморфізм.