Quantum-chemical analysis of all possible m1Thy · m9Ade pairs of DNA bases

TitleQuantum-chemical analysis of all possible m1Thy · m9Ade pairs of DNA bases
Publication TypeJournal Article
Year of Publication2014
AuthorsPlodnik, DP, Voiteshenko, IS, Hovorun, DM
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.07.158
Issue7
SectionBiophysics
Pagination158-164
Date Published7/2014
LanguageUkrainian
Abstract

The complete family of hydrogen-bound base pairs of DNA m1Thy · m9Ade methylated by glycosidic linkages is obtained by quantum-chemical methods on MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) levels of theory for the first time. The total number is 32 different structures. It is first found that the Hoogsten pair corresponds to the global minimum of the Gibbs free energy, near which three couples (reverse Hoogsten, Watson–Crick, and reverse Watson–Crick ones) in the energy interval 0–1.20 kcal/mol are located. Their combined occupancy under normal conditions is 99.9%.

Keywordsm1Thy · m9Ade pairs of DNA bases, quantum-chemical analysis
References: 

1. Brovarets O. O. Ukr. biokhim. zhurn., 2013, 85, No. 4: 104–110 (in Ukrainian).
2. Brovarets O. O., Hovorun D. M. Ukr. bioorgan. acta., 2010, No. 1: 11–17 (in Ukrainian).
3. Sukhodub L. F. Chem. Rev., 1987, 87, No. 3: 589–606. https://doi.org/10.1021/cr00079a006
4. Brovarets O. O., Hovorun D. M. J. Biomol. Struct. Dyn., to appear. doi: https://doi.org/10.1080/07391102.2013.852133.
5. Nedderman A. N. R., Stone M. J., Williams D. H. et al. J. Mol. Biol., 1993, 230, No. 3: 1068–1076. https://doi.org/10.1006/jmbi.1993.1219
6. Petrushka J., Sowers L. C., Goodman M. F. J. Mol. Biol., 1986, 83: 1559–1562.
7. Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O.,. Austin A. J, Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P.M. W., Johnson, Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C. 02. Gaussian, Inc., Wallingford CT, 2004.
8. Bader R. W. F. Atoms in molecules. A quantum theory. Oxford: Calendon Press, 1990.
9. Sokolov N. D., Chulanovskyi V. M. (Eds.). Hydrogen Communications. Moscow: Nauka, 1964 (in Russian).
10. Keith T. A. AIMAll (Version 10.05.04), 2010 Retrieved from http://aim.tkgristmill.com.
11. Grunenberg J., Barone G. Royal Society of Chem., 2013, No. 3: 4757–4762.
12. Weinhold F., Landis C. R. Chem. Educ. Res. Pract. Eur., 2001, No. 2: 91–104.
13. Iogansen A. V. Spectrochim. Acta. Part A., 1999, 55: 1585–1612. https://doi.org/10.1016/S1386-1425(98)00348-5
14. Espinosa E., Alkorta I., Rozas I., Elguero J., Molins E. Chem. Phys. Lett., 2001, 336, No. 5–6: 457–461. https://doi.org/10.1016/S0009-2614(01)00178-6